博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
霍夫变换的基本理解(第八天)
阅读量:5862 次
发布时间:2019-06-19

本文共 3495 字,大约阅读时间需要 11 分钟。

千万注意:使用opencv自带的霍夫API

HoughLinesP():此函数输入的是一个二进制且八位的图像,例如:你不能用cvtcolor()变换之后直接输入。

HoughCircles():此函数输入的是一个灰度且八位的图像,例如:你不能经过threshold()、findcontours()等之后的图像进行输入。

我现在还不知道经过二值化的图像怎么转化为灰度图。。。。会了再补充。

 ---霍夫直线变换---

源程序没有分析,只是分析了基本的原理。。。等以后用到之后再进行分析

首先回顾一下坐标系的概念--->>>

1.直角坐标系(直线)<--->极坐标系(点),极坐标系(直线)<--->直角坐标系(点)。相互对应的关系

2.推导的公式很简单,看一下就懂了。

3.对于第三个公式,我们给定一个(x0,y0),就是图像的一个像素点(这个图是经过滤波、灰度、梯度等处理的),那么这个点在极坐标就可以画出一条直线。因为在极坐标看的不明显,把这个函数画在直角坐标系显示(图一),就类似三角函数的图像。现在我们再给定点(x1,y1)、(x2,y2)。。。进行同样的方法画图(图二),这个点在直角坐标系就是一条直线,那么多重合的点,就说明很多的像素点在这个直线上,我们设定一个阈值L,当点的重合率大于这个阈值就认定是直线。

4.有点饶人,直角和极坐标相互的转化实现。

 

图一

图二

 

上面的原理是可以运行的:

1.效率太低了,试想一下图像边缘非常的多,如果每一个像素点都进行计算的话,那太费时费事了。

2.线段的端点没办法检测。

3.对于相近的线段没办法区分。

HoughLinesP函数就是利用概率霍夫变换来检测直线的。它的一般步骤为:

1、随机抽取图像中的一个特征点,即边缘点,如果该点已经被标定为是某一条直线上的点,则继续在剩下的边缘点中随机抽取一个边缘点,直到所有边缘点都抽取完了为止;

2、对该点进行霍夫变换,并进行累加和计算;

3、选取在霍夫空间内值最大的点,如果该点大于阈值的,则进行步骤4,否则回到步骤1;

4、根据霍夫变换得到的最大值,从该点出发,沿着直线的方向位移,从而找到直线的两个端点;

5、计算直线的长度,如果大于某个阈值,则被认为是好的直线输出,回到步骤1。

 

opencv霍夫直线变换:

houghlines()--->>>

其返回的是(ρ,Θ),ρ代表距离(0,0)点到直线的欧几里得距离,也就是直线距离。Θ代表的是(0,0)点垂直直线然后与Y轴的夹角。

 

houghlinesP()--->>>

返回的是直线两个点:(x0,y0)(x1,y1)

 

刚开始我看不起houghlines函数,感觉效率低,后来基本上都是用houghlinesP的,但是这次实现文本的转正就用到了,这两个用途不一样吧!

 

---霍夫圆变换---

圆变换的想法和直线变化是一样的,就是把直角坐标系中的圆画在极坐标系中,然后求交点

 

第一阶段:检测圆心

1.1、对输入图像边缘检测;

1.2、计算图形的梯度,并确定圆周线,其中圆周的梯度就是它的法线;

1.3、在二维霍夫空间内,绘出所有图形的梯度直线,某坐标点上累加和的值越大,说明在该点上直线相交的次数越多,也就是越有可能是圆心;

1.4、在霍夫空间的4邻域内进行非最大值抑制;

1.5、设定一个阈值,霍夫空间内累加和大于该阈值的点就对应于圆心。

第二阶段:检测圆半径

2.1、计算某一个圆心到所有圆周线的距离,这些距离中就有该圆心所对应的圆的半径的值,这些半径值当然是相等的,并且这些圆半径的数量要远远大于其他距离值相等的数量;

2.2、设定两个阈值,定义为最大半径和最小半径,保留距离在这两个半径之间的值,这意味着我们检测的圆不能太大,也不能太小;

2.3、对保留下来的距离进行排序;

2.4、找到距离相同的那些值,并计算相同值的数量;

2.5、设定一个阈值,只有相同值的数量大于该阈值,才认为该值是该圆心对应的圆半径;

2.6、对每一个圆心,完成上面的2.1~2.5步骤,得到所有的圆半径。

 opencv实例:

1 #include
2 #include
3 #include
4 using namespace cv; 5 using namespace std; 6 7 int main(int argc,char**argv) 8 { 9 Mat input_image = imread("1.jpg");10 if (input_image.data==NULL) {11 return -1; cout << "can't open image.../";12 }13 imshow("Sourse image", input_image);14 Mat mid_image,output_image, mid_image1;15 mid_image.create(input_image.size(),input_image.type());16 mid_image1.create(input_image.size(), input_image.type());17 cvtColor(input_image,output_image,COLOR_BGR2GRAY);18 GaussianBlur(output_image,output_image,Size(3,3),2,2);19 Canny(output_image, output_image,50,200);20 vector
lines;21 vector
circles;22 HoughLinesP(output_image,lines,1,CV_PI/180,80,50,10);23 HoughCircles(output_image,circles,HOUGH_GRADIENT,1.5,10,200,100,0,0);24 for (size_t i = 0; i < lines.size(); i++)25 {26 Vec4i l;27 l = lines[i];28 line(mid_image,Point(l[0],l[1]),Point(l[2],l[3]),Scalar(100,255,200),1,LINE_AA);29 }30 imshow("Destinate1 image", output_image);31 imshow("Destinate2 image", mid_image);32 for (size_t j = 0; j < circles.size(); j++)33 {34 Vec3f c;35 c = circles[j];36 circle(mid_image1, Point(cvRound(c[0]), cvRound(c[1])), 3, Scalar(0, 255, 50));37 circle(mid_image1, Point(cvRound(c[0]), cvRound(c[1])), cvRound(c[2]), Scalar(0, 255, 50),3,8,0);38 }39 imshow("Destinate3 image", mid_image1);40 waitKey(0);41 return 0;42 }

 opencv自带的API主要就是参数的设置,设置不好的参数要么检测的不好,要么根本检测不到直线和圆!

 1.圆的检测是找不到同心圆的

 2.很容易受噪声干扰

 3.必须非常的圆度,椭圆不行

主要参考:http://blog.csdn.net/zhaocj/article/details/50454847

转载于:https://www.cnblogs.com/wjy-lulu/p/6677280.html

你可能感兴趣的文章
Linux运维基础命令笔试题--看看你会多少?
查看>>
Oracle 12c dataguard云上挖坑记--为某机场贵宾业务部署oracle 12c到云端
查看>>
Elasticsearch Index API & Aggregations API & Query DSL
查看>>
腾讯(成都)创新设计思维_ BY 高煥堂
查看>>
ospf v3 及WIN XP ipv6
查看>>
SQL Server 安装
查看>>
老生常谈一下在AD中细粒度设置密码策略
查看>>
大侠唐在飞:WIN8试用记
查看>>
MongoDB介绍
查看>>
【ZooKeeper Notes 13】ZooKeeper Watcher的事件通知类型
查看>>
WPF-003 popup实现下拉列表的问题
查看>>
WEB应用的安全的登录认证
查看>>
Apache的httpd-2.4.23 Server源文件安装
查看>>
VR+醫療MRI
查看>>
《统一沟通-微软-技巧》-19-Lync 2010如何使用智能手机中联系人
查看>>
SCCM2012SP1---分发部署软件
查看>>
活动目录长时间未复制链接丢失解决办法
查看>>
19.Azure备份Azure上的虚拟机(上)
查看>>
自定义javascript调试输出函数
查看>>
云计算让教学随需应变
查看>>